Refitting FVS diameter growth equations
across multiple ecoregions
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OVERVIEW

What are we doing?

» Refitting Forest Vegetation Simulator (FVS) diameter
growth equations from Open Data (FIA) as a recurring
and reproducible use case.

» Can we simplify these growth equations and make
them more consistent and easily maintained across
regions?

» Can we implement a model fitting process .
that propagates uncertainty while learning s
simultaneously and borrowing strength
across multiple regions?

icroplot:



MOTIVATION

Need to Refit FVS

FVS is the most widely-used
growth-and-yield model in
the USA...

Out-of-the-box, FVS
substantially diverges from
patterns observed in FIA,
long-term permanent plot
records, and widely-used
yield curves.

Supplementary Info from Diaz et al. (2018) “Tradeoffs..”
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FVS PN variant on Douglas-fir. Gray lines show FVS simulations. Blue lines show
permanent plot data. Black lines show published yield curves. Red line shows
median, and bands show 25th-75th and 10th-90th percentile range of FIA data.

https://www.mdpi.com/1999-4907/9/8/447



DATA SELECTION
Mitigating “Fall-Down”

Filtering FIA Observations

> All trees that have been remeasured on an FIA plot at least once in
Oregon, Washington, or California.

» Remove plots with harvest, fire, or geologic disturbance.
These are disturbances it is reasonable to expect FVS users to specify.

» Retain plots where insect, wind, and other disturbances noted.
These are disturbances we rarely expect FVS users to (be able to) specify.

» Remove trees where 10-year DBH change is so negative that it
exceeds reasonable measurement error with a diameter tape.




AVAILABLE DATA

Repeatedly measured FIA plots

Table 3.14. Repeatedly measured trees used for model training and evaluation

SPECIES FVS5 REGIONAL VARIANTS

Common Name WwWC PN S0 EC BM CA NC WS Total
Douglas-fir 15,649 10,155 303 5614 3318 3490 3783 889 44,004
Ponderosa pine 293 2 8315 2,099 6057 1,023 103 1,078 19,439
Western hemlock 6,288 3571 20 699 - 30 130 10,926
White fir 891 1 2,706 4 329 1,267 7,474
Pacific silver fir 4114 373 88 932 -- 5.511
Mountain hemlock 1.836 54 1,022 690 83 4.069
Western redcedar 1,567 751 9 3,134
Canyon live oak 8 2 2,555
Tanoak 5 - 2,252
Red alder 527 1,796
California black oak 68 4 1,607
Pacific madrone 190 65 1,432
Coast redwood -- -- 1.405
Bigleaf maple 424 527 1.205
Noble fir 976 20 103 1,114
Notes: The six most abundant species in each of the four focal ecoregions are shown with tinted
cells. Each cell displays the count of unique live trees with repeated observations of DBH
available for modeling.
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THE (abridged) WYKOFF MODEL

How FVS (often) estimates diameter growth A Basal Area Increment Model for
Individual Conifers in the Northern
Rocky Mountains

BAI = f(SIZE, SITE, COMP) e . o

~ p) _ p)

BAL DBH t+1 DEH t o Pacific Northwest Coast (PN)

DDS = DI th +1 " DI th e Variant Overview

SIZE = b, + b;*1n(DBH) + b,*DBH? —

SITE = b,*1n(SI) + b,*SL + b *EL

COMP = b.*CR + b, *COMP;per + bg*COMP.rap

DDS = exp(SIZE + SITE + COMP)

Where:

BAl is basal area increment; DDS is difference of inside-bark squared diameters; DBH is diameter
at breast height; COMP is the combined effects indicating a tree’s competitive environment; CR is
crown ratio; COMPgranp iS @ stand-level competitive indicator (e.g., crown competition factor); and
COMP;xe¢ is a tree-level indicator of competitive status (e.g., basal area of larger trees).



MAINTAINING THE MODEL

Model selection A Basal Area Increment Model for

Individual Conifers in the Northern
Rocky Mountains

» In each region, FVS employs a variety of covariates, —
including quadratic terms to predict diameter growth for
each tree SpeCieS o Pacific Northwest Coast (PN)
' Rl Variant Overview

Forest Service

c v/ 7 7 o
Forest Management Forest Vegetation Simulator

Service Center

» In several instances, a species’ equation may include
collinear covariates, such as multiple indicators of tree-
level or stand-level competition.

» Do we need to maintain this many customized equations across species and regions? Can
we fit a model using simpler variables that can be calculated directly from inventory data?

.. T
IN(DDS )= b1 + (by * EL) efimmmimfmiaiss + (|, * |n(S/)) iyt m—G ()
dimris + (b7 * SL) weiimmimGinii + (hg * |n(DBH)) + (b10 * CR) it

(b12 * DBHA2) + (b13 * BAL / (IN(DBH + 1.0))) "mefemmmmeisinyimmpmf iyl
miompuiinliniindng + (17 * BAL) islommiimiyins




MULTIPLE OBSERVATIONS AND ERRORS

TREE GROWTH INFERENCE AND PREDICTION FROM DIAMETER

BayeSian State Space Model with CENSUSES AND RING WIDTHS
Errors-in-Variables

James 8. Crare, " Micuae. Wovrosm, ™

Wrkoff

Unobserved®

States process model > True diameter for a tree evolves on a periodic
time step and is always measured with error.
This evolution of true and observed DBHs and
increments is described using a Bayesian State
Space model.
DEH
Observation Ybs C

Model . . .

i » Periodic measurements of tree diameter are

available at ~10-year intervals.

> Some trees also have increment cores collected
Observations that show incremental growth at 5-year
(with error) intervals.

» The model is implemented in Numpyro and fit
using Markov Chain Monte Carlo (NUTS).



COMPARING MODELS

HDI-ROPE decision rule

P&r‘fimaF:'llr;ernl.‘-l:fc.h rII-'I;JIJt‘| Difference in Perfarmance > US|ng Mean Absolute El’ror Of dlameter gI’OWth
predictions as a performance metric, we
compare the distribution of errors for each

model against our benchmark/preferred model.

# of posterier samples

» We define a Region of Practical Equivalence
(ROPE) that models should not be judged

superior/inferior from one another if their
performance differs by <1% of the average 10-
year diameter growth for a tree species.

Candidate Inferiar Equivalent Candidate Superiar

» This leads to four possible outcomes for a
candidate model relative to the benchmark:

e L E— - | inferior, equivalent, superior, or inconclusive

- _n;':':';-;:|-||]-I?:I'.;I1.p4|_|1]|i3.-'~:||:Im.hI e el _I:DI:rJH”rIu I:LII: v e _IEI;;'J.:;'H”..rr.;:-:-.r-JL!-.:.I_I;EII:“ml“ e (difference between mOdels Overlaps ROPE)

# of posteriar samples




HIERARCHICAL BAYES

Learning to borrow strength

ERSN R DU/ A UNPOOLED / INDEPENDENT REGIONS - CURRENT FVS PATTERN
l l l Independent sets of model parameters (0) are fit in each ecoregion to
CEESICSICIN S IO RNC) ' observations only from that ecoregion

model

Model parameters in each ecoregion are constrained to follow a parent

2
K, 0
/ / \ HIERARCHICAL / PARTIALLY POOLED - PROPOSED PATTERN
01 0y - Ok S )
j 1 l distribution shared across ecoregions.

parameters

observations Y1 Yo Yk

Image credit: Chris Fonnesbeck
https://github.com/widdowquinn/Teaching-Stan-Hierarchical-Modelling/tree/master/images

Join the Bayesian conspiracy!



EMBRACING SIMPLER MODELS
with hierarchical forms

Table 3.16. Summary of Unpooled Model Comparisons
HDI-ROPE decisions within each FVS Regional Variant

» For every species and

Common Name

region, there was not a Douglas-fir 5 2
single candidate model |t 0 0
: Western hemlock 2 0
deemed superior to the [N, 0 0
benchmark model. Pacific silver fir 4 0 -
Mountain hemlock 1 0 0
: Western redced 0 0 0
(Out of 17 candidates among . = emf ° i“ ) X X
“ ” “ot »” AIYOI Ive 0ak
full” and smple Wykoff Tanoak 0 B 0
models choosing from three Red alder 0 0
tree-level and three stand-level California black oak 0 0
competition alternatives.) Pacific madrone 0 0
Coast redwood - 0
> Unpooled benchmark Bigleaf maple 0 0
Noble fir 1 0
models were also never
I Notes: for each of the four focal regional variant of FVS (WC = Westside Cascades, PN = Pacific Northwest Coast, CA = Inland
d eem ed Su pe rior tO California and Southern Cascades, and NC = Klamath Mountains), 17 candidate models were compared using the HDI-ROPE
h |e rarc h |Ca | m Od e IS for decis.ion rule against the SIMPLE—BALLNDBH—BAL be.nchmark model. The values in eac?h cell correspor.ld to the cpunt of. .
: : candidate models for a species in each ecoregion categorized as one of four model comparison outcomes: inconclusive (?); inferior
a I’]y S peC les Or I’egl on. than benchmark (<); equivalent to benchmark (=), and superior to benchmark (>). Regions where a species was never observed are

indicated with “--".



REGIONS / FVS VARIANTS

PN ca

DID ANYTHING IMPROVE? - 4 “ﬁ“l S
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compared to existing FVS predictions
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GAZING INTO POSTERIORS

What really matters

Tree size and crown ratio have
strong positive effects.

Site productivity is positive but
less impactful.

Slope and elevation effects are
commonly near zero.

Tree-level competition indicator
always negative. Stand-level
competition almost always
positive and smaller in
magnitude.

Substantial variation left
unexplained at location and plot-
levels.

Standardized Coefficients in Douglas-fir Benchmark Model
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GROWTH-AND-YIELD
Key Findings

» Open Data from FIA provides a large and diverse data stream that can be used to
refit FVS on a recurring basis.

» FVS diameter growth equations can be simplified without reducing performance
for all species and regions examined.

» A hierarchical Bayesian approach allows for models to be fit simultaneously across
multiple regions spanning broad geographic extents, which may be particularly

valuable when new climate-aware models are developed.
Bayesian models also intuitively capture model uncertainty and accommodate multiple sources of
observations with error. This may eliminate the need to maintain independent FVS variants.



Thank you.

ddiaz@vibrantplanet.net
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